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A Note on the Phase Velocity in
Continuously Loaded Coaxial
Cables

The loaded coaxial cable pictured in
Fig. 1 has been analyzed from a transmission
line viewpoint by Prache! and Raisbeck.?
This approach involves finding the equiva-
lent (static) inductance L and capacitance
C per unit length of line and equating the
dominant-mode phase velocity to (LC)V2

Fig. 1. Cross section of axially uniform,
inhomogeneous coaxial cable.

An exact solution for the phase velocity,
neglecting losses, can be found for this sys-
tem by the standard method of generating
scalar wave solutions and applying the ap-
propriate boundary conditions at r=g, b, ¢,
and d. Thus, the results are a four-by-four
determinantal equation, the lowest roots of
which determine the propagation constant
for the dominant (TMy;) mode. This pro-
cedure has been carried out by the author to
check the accuracy of the transmission line
results.

Solutions for the phase velocity were de-
termined with the help of a computer for
frequencies in the 100 to 200 megacycle
range with dielectric constants ranging from
2 to 10 and relative permeabilities ranging
from 2 to 40.% For all the cases studied, the
computer results agreed with those pre-
dicted by the approximate theory to within
2.5 per cent. Part of this variance is due to
accuracy limitations or: the Bessel function
programs used in the computation. One
may conclude, therefore, that even in cases
of heavy loading, the approximate solution is
quite accurate.
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An Extension to the High Loss
Region of the Solution of the
Confocal Fabry-Perot Resonator
Integral Equation

Recently two papers have appeared that
relate the fields in confocal Fabry-Perot
resonators to oblate spheroidal coordinates.
Zimmerer [1] states “ ... the spheroidal
surfaces within the resonator are surfaces of
constant phase and the hyperboloids are
surfaces of constant amplitude.” Vainshtein
[2] shows that starting from an oblate
spheroidal resonator and assuming that the
propagation is directed largely along the g
axis (see Fig. 1), one can determine the
amplitude distribution along a resonator
plate. The result he obtained agrees very
well with that obtained previously by
Goubau and Schwering [3] who derived
this result more directly from Maxwell's
equations.

In the course of their work, the Goubau-
Schwering integral (22) appears as
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It is the purpose of this note to show that
the Goubau-Schwering equation can be re-
lated to a known integral equation which
appears when solving for oblate spheroidal
wave functions. Then, as a result, eigen-
values for the high loss regions can be related
to tabulated values which will extend the
eigenvalue results previously published [4].

Consider, from Fig. 1, that for R&Z,
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where a is the Goubau-Schwering parameter
defined by
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Since the oblate spheroidal coordinates
account for the phase terms, one can define
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Also because a reiterative system is de-
sired, one can write
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where p is the eigenvalue and represents the
ratio of the field intensity amplitude at a
phase transformer to the succeeding phase
transformer, i.e., it is a measure of the loss.

Now substituting (2) to (5) into (1)
leads to
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A change of variables
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in (6) results in
4a? 2 .
16, —m0 =5 [ Gl —20
w 0

492 :
A (3’7 ¢¢’) oo (8)
w

The angle 6 was assumed to be small in
the above work, and the angle ¢ was de-
fined only for —7 /2 <¢<wx/2. As a result of
this latter condition, ¢ may be assumed to be
periodic outside of this range, and hence
one can express ¢ in a Fourier series and find
its first coefficient to be 4/x. With this (8)
becomes
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One may now compare (9) with (3), (3),
and (12) of Flammer [5]. The integral
equation that appears in Flammer is in a
slightly different form than that used in this
work. The derivation of the desired relation
follows immediately. Flammer states
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Let =0 and n=cos 6 and divide the
range of the integration into two parts, from
fo=0to 8g=m/2 and from 6y=n/2to=x.In
the latter range of integration, let 8= —1
and for (n —m) even, one has

Spn(—1ic, —c0s ) = Sma(—ic, cosy) (11)
Therefore (10) can be written in the form
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The desired result may now be obtained
by comparing (9) with (12) and relating
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where R,.®(—ic, i0) and Spa( —1ic, cos 8g)
are respectively the oblate spheroidal radial
and angular wave functions. Because the
values of Rn.®(—ic, i0) are tabulated for
various values of m and # [6], it is a simple



